skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Walker, Michael J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The Aerodyne Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) are the most widely applied tools for in situ chemical analysis of the non-refractory bulk composition of fine atmospheric particles. The mass spectra (MS) of many AMS and ACSM observations from field and laboratory studies have been reported in peer-reviewed literature and many of these MS have been submitted to an open-access website. With the increased reporting of such datasets, the database interface requires revisions to meet new demands and applications. One major limitation of the web-based database is the inability to automatically search the database and compare previous MS with the researcher's own data. In this study, a searchable database tool for the AMS and ACSM mass spectral dataset was built to improve the efficiency of data analysis using Igor Pro, consistent with existing AMS and ACSM software. The database tool incorporates the published MS and sample information uploaded on the website. This tool allows the comparison of a target mass spectrum with the reference MS in the database, calculating cosine similarity, and provides a range of MS comparison plots, reweighting, and mass spectrum filtering options. The aim of this work is to help AMS and ACSM users efficiently analyze their own data for possible source or atmospheric processing features by comparison to previous studies, enhancing information gained from past and current global research on atmospheric aerosol. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Abstract. The chemical complexity of biomass burning organic aerosol (BBOA) greatlyincreases with photochemical aging in the atmosphere, necessitatingcontrolled laboratory studies to inform field observations. In theseexperiments, BBOA from American white oak (Quercus alba) leaf andheartwood samples was generated in a custom-built emissions and combustionchamber and photochemically aged in a potential aerosol mass (PAM) flowreactor. A thermal desorption aerosol gas chromatograph (TAG) was used inparallel with a high-resolution time-of-flight aerosol mass spectrometer(AMS) to analyze BBOA chemical composition at different levels ofphotochemical aging. Individual compounds were identified and integrated toobtain relative decay rates for key molecules. A recently developedchromatogram binning positive matrix factorization (PMF) technique was usedto obtain mass spectral profiles for factors in TAG BBOA chromatograms,improving analysis efficiency and providing a more complete determination ofunresolved complex mixture (UCM) components. Additionally, the recentlycharacterized TAG decomposition window was used to track molecular fragmentscreated by the decomposition of thermally labile BBOA during sampledesorption. We demonstrate that although most primary (freshly emitted) BBOAcompounds deplete with photochemical aging, certain components eluting withinthe TAG thermal decomposition window are instead enhanced. Specifically, theincreasing trend in the decomposition m∕z 44 signal (CO2+)indicates formation of secondary organic aerosol (SOA) in the PAM reactor.Sources of m∕z 60 (C2H4O2+), typically attributed tofreshly emitted BBOA in AMS field measurements, were also investigated. Fromthe TAG chemical speciation and decomposition window data, we observed adecrease in m∕z 60 with photochemical aging due to the decay ofanhydrosugars (including levoglucosan) and other compounds, as well as anincrease in m∕z 60 due to the formation of thermally labile organic acidswithin the PAM reactor, which decompose during TAG sample desorption. Whenaging both types of BBOA (leaf and heartwood), the AMS data exhibit acombination of these two contributing effects, causing limited change to theoverall m∕z 60 signal. Our observations demonstrate the importance ofchemically speciated data in fully understanding bulk aerosol measurementsprovided by the AMS in both laboratory and field studies. 
    more » « less
  4. null (Ed.)